報告一
報告題目:Mathematical modeling and analysis of bacteria-phage interactions in a chemostat(恒化器中細菌-噬菌體相互作用的數學建模和分析)
報告時間:2017年5月11日上午9:00-10:00
報告地點:必一体育平台二樓會議室
報告摘要: I first talk about the importance of phage therapy in fighting bacteria infections and review the advances of mathematical modeling in the study of phage dynamics. Then, I introduce our researches on how immune responses affect the outcomes of phage therapy. It is shown that the host immune response induces the backward bifurcation. Thus, there exists the bistability of phage-free equilibrium with the phage-infection equilibrium. More importantly, it is found that the model exhibits the coexistence of a stable phage-infection equilibrium with a stable periodic solution. The crucial implication of these phenomena is that phage infection fails both from the smaller dose of initial injection and from the larger dose of initial injection. Thus, a proper design of phage dose is necessary for phage therapy. Further analysis indicate that the inhibition effects of bacteria and phages can induce periodic oscillations and modulated oscillation.
報告人:王穩地,西南大學教授。博士畢業於西安交通大學,重慶市名師,享受國務院特殊津貼,中國生物數學學會副理事長,重慶市應用數學學科帶頭人,現任International Journal of Biomathematics編委和Journal of Biological systems編委。研究方向為生物數學和應用動力系統. 主持(完成或在研)國家自然科學基金課題5項,教育部項目2項。在SIAM J. Appl. Math,JDE, J. Math. Biol. 等雜誌發表論文100多篇.
報告二
報告題目:Dynamics of the delayed reaction-diffusion population models(時滯反應擴散種群模型的動力學)
報告時間:2017年5月11日上午10:00-11:00
報告地點:必一体育平台二樓會議室
報告摘要:This talk mostly includes two sections as follows: (1) I will give a delayed stage structured diffusive prey-predator model, by using the theory of partial functional differential equations, the local stability of a interior equilibrium is established and the existence of Hopf bifurcations at the interior equilibrium is also discussed. (2) Considering a diffusive plant invasion model with delay under the homogeneous Neumann boundary condition, the qualitative properties, including the existence and uniqueness of a nonnegative solution, persistence property, and local asymptotic stability of the constant steady states are obtained. In some special cases, I investigate the system’s discontinuous bifurcation. The numerical results show that diffusion can make the system unstable and increasing delay may cause the plant extinction.
報告人:趙洪湧,南京航空航天大學教授,博士生導師。長期從事時滯微分方程動力學、網絡傳播動力學與控製、神經網絡優化與圖像處理、生物系統動力學等研究。江蘇省高校“青藍工程”優秀青年骨幹教師和中青年學術帶頭人。2014年至2016年,連續三年入選愛思唯爾中國高被引學者榜單。2016年入選南京航空航天大學“校園年度人物”;獲省自然科學優秀論文二等獎1項、江蘇省高校科技成果二等獎1項、南京航空航天大學科技成果三等獎1項;2016年,獲南京航空航天大學“群星”創新獎。主編教材1部。國家自然科學基金通訊評議專家;教育部學位與研究生教育發展中心博士學位論文學位論文特邀評議專家;主持國家自然科學基金2項,參與1項;主持省級基金兩項. 已在SCI刊物上發表學術論文60余篇,被SCI刊物引用2000余次。現為中國自動化學會會員,TCCT隨機系統控製委員會委員,第八屆中國生物數學學會理事。