報告題目:一類擬周期強迫微分方程的穩定與混沌動力學(Stable and Chaotic Dynamics in CertainQuasi-Periodically Forced Differential Equations)
報告時間:2016年10月16日(周日)上午13:30-14:30
報告摘要:In this talk we study the complicateddynamics of quasi-periodically perturbed ordinary differential equations with ahomoclinic orbit to a dissipative saddle point. We show that there are fourregions of parameters in which the equations have respectively: (1) attractingquasi-periodic integral manifolds of Levinson type; (2) transition to chaos;(3) strange attractors; (4) homoclinic tangles. In the case of homoclinictangles, we not only obtain the results on horseshoes similar to the existingones, but also give a comprehensive geometric description of the structures oftangles.
報告人簡介:呂克寧教授,美國楊伯翰大學數學系終身教授、博士生導師,研究方向為無窮維動力系統和隨機偏微分方程等。2005年獲得中國國家傑出青年科學基金(B類)。美國《J. Differential Equations》等國際著名學術期刊編委,在世界數學一流雜誌《Invent. Math.》、《Memoirs of AMS》、《Commun. Pur. Appl. Math》、《Transactions of AMS》等上發表多篇研究論文。